
Atomic Upgrading of Distributed Systems

Sander van der Burg
Delft University of Technology,

The Netherlands
s.vanderburg@tudelft.nl

Eelco Dolstra
Delft University of Technology,

The Netherlands
e.dolstra@tudelft.nl

Merijn de Jonge
Philips Research,
The Netherlands

merijn.de.jonge@philips.com

Abstract
Upgrading distributed systems is a complex process. It re-
quires installing the right services on the right computer,
configuring them correctly, and so on, which is error-prone
and tedious. Moreover, since services in a distributed sys-
tem depend on each other and are updated separately, up-
grades typically are not atomic: there is a time window dur-
ing which some but not all services are updated, and a new
version of one service might temporarily talk to an old ver-
sion of another service. Previously we implemented the Nix
package management system, which allows atomic upgrades
and rollbacks on single computers. In this paper we show an
extension to Nix that enables the deployment of distributed
systems on the basis of a declarative deployment model, and
supports atomic upgrades of such systems.

1. Introduction
A distributed system can be described as a collection of inde-
pendent computers that appear to a user as one logical sys-
tem (Nadiminti et al. 2006). Services in a distributed sys-
tem are working together to reach a common goal by ex-
changing data with each other. Services have dependencies
on components on the same computer, the so-called intra-
dependencies, but also on services on other computers in the
network, the inter-dependencies.

Upgrading distributed systems is usually a semi-automatic
process. Some tasks are executed manually and for some
tasks specific deployment tools are used. The problem with
this approach is that it requires people with knowledge about
these upgrade tasks and up-to-date documentation. The up-
grade process becomes problematic when the documentation
is missing or outdated, or if people with necessary skills are
not available.

Another problem of upgrading distributed systems is in-
tegrity. If we want to change the deployment state of a dis-
tributed system to a new state, for instance by adding, re-
moving or replacing services on computers or migrating ser-
vices from one computer to another we do not want to end up

Copyright is held by the author/owner(s).
HotSWUp’08, October 20, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-304-4/08/10.

with a system in an inconsistent state, i.e., a mix of the old
and new configurations. Thus, if we upgrade a distributed
system, there should never be a point in time where a new
version of a service on one computer can talk to an old ver-
sion of a service on another computer.

To make the upgrade process reproducable and more ef-
ficient, the deployment and upgrade process should be au-
tomatic. Therefore, we need to capture the services and net-
work, as well as the assignment of services to computers
in the network, in a model. This model allows us to deter-
ministically replicate a deployment scenario in a particular
environment. The second advantage of such a model is that
we can reason about its correctness. Finally, with a model
of the deployment, we always know the deployment state of
the distributed system. To guarantee the correctness of the
deployment we need some notion of a transactional, atomic
commit similar to database systems. That is, the transition
from the current deployment state to the new deployment
state should be performed completely or not at all, and it
should not be observable half-way through.

We previously developed the Nix package manager (Dol-
stra 2006), a software deployment system that builds soft-
ware packages from purely functional models. It guarantees
that dependency specifications are complete and supports
atomic upgrades and rollbacks. However, its models and
atomic upgrades deal with single computers. In this paper we
propose an extension to Nix, called Disnix, which extends
the Nix language to model distributed deployments. We also
show how distributed systems can be upgraded atomically.

2. The Nix package manager
Conventional package managers such as RPM (Foster-
Johnson 2003) do not support atomic updates of packages.
This is because updating a package requires replacing all the
files belonging to the package with newer versions, which is
not something that can be done in an atomic transaction on
most file systems. Thus, during the update, there is a time
window during which the system is in an inconsistent state:
the file system contains some files belonging to the old ver-
sion of the package, and some belonging to the new version.
The effect of using the package during this time window
(e.g., starting a program in the package) is undefined.

/nix/var/nix/profiles
default
default-23
default-24

/nix/store
y13cz8h6fliz...-user-env

bin
gcc

firefox
pz3g9yq2x2ql...-firefox-2.0.0.16

bin/firefox
ylbjk3gsrbnb...-gcc-4.2.4

bin/gcc
xham30m4k5lx...-user-env

bin
firefox

hrqs9gwzl7kj...-firefox-2.0.0.14
bin/firefox

Figure 1. Nix store and atomic upgrades using symlink
indirection

The Nix package manager (Dolstra et al. 2004; Dolstra
2006) solves this problem by building and storing pack-
ages in a purely functional manner: packages are built from
source using descriptions in a simple purely functional lan-
guage, and build results are immutable. This ensures that
multiple versions of a package can coexist on a system,
that upgrades can be performed in an atomic manner, and
that it is possible to roll back to previous configurations. It
is used among other things as the basis for NixOS (http:
//nixos.org/), a Linux distribution with a purely functional
configuration management model (Dolstra and Löh 2008).

Figure 1 shows how Nix stores packages. Rather than
storing packages in global namespaces such as the /usr/bin
directory on Unix, each package is stored in isolation
of others in a subdirectory of the Nix store, the direc-
tory /nix/store. For instance, the directory /nix/store/-
pz3g9yq2x2ql...-firefox-2.0.0.16 contains a particular in-
stance of Mozilla Firefox. The string pz3g9yq2x2ql... is a
160-bit cryptographic hash of the inputs to the build process
of the package: its source code, the build script, dependen-
cies such as the C compiler, etc. This scheme ensures that
different versions or variant builds of a package do not in-
terfere with each other in the file system. For instance, a
change to the source code (e.g., due to a new version) or to
a dependency (e.g., using another version of the C compiler)
will cause a change to the hash, and so the resulting package
will end up under a different path name in the Nix store.

Nix builds packages from a description in a purely func-
tional language called the Nix expression language. Nix
expressions describe dependency graphs of build actions,
called derivations, that each build a path in the Nix store.
Figure 2 shows a Nix expression defining a number of
derivations bound to variables that can refer to each other.
For instance, the value of the variable HelloService is a

rec {
HelloService = derivation {

name = "HelloService-1.0";
src = fetchurl {

url = http://nixos.org/.../HelloService.tar.gz;
md5 = "de3187eac06baf5f0506c06935a1fd29";

};
buildInputs = [ant jdk axis2];
buildCommand = ’’

tar xf $src
cd HelloService
ant generate.service.aar
mkdir -p $out/webapps/axis2/WEB-INF/services
cp HelloService.aar $out/webapps/axis2/WEB-INF/services

’’;
};

HelloWorldService = derivation { ... };
stdenv = ...
firefox = import ...
... # other package definitions

}

Figure 2. pkgs.nix, an example of a Nix expression.

derivation that builds an Apache Axis web service. The
function derivation is the primitive operation that produces a
build action from a set of attributes, such as the name of the
package, its source (which is produced by the build action re-
turned by the call to the function fetchurl), a shell script that
performs the actual build action (buildCommand), and so
on. All attributes are passed through environment variables
to the build command, e.g., the variable src will contain the
path in the Nix store of the downloaded sources. The envi-
ronment variable out contains the target path in the store for
the package, e.g., /nix/store/hash-HelloService-1.0.

The user can install packages using a command such as

$ nix-env -f pkgs.nix -i firefox

which builds the derivation resulting from the evaluation of
the firefox variable in Figure 2, along with all its dependen-
cies. To upgrade Firefox, the user updates the Nix expression
in question (which is typically automated through a num-
ber of mechanisms, such as an automated download mecha-
nism), and performs

$ nix-env -f pkgs.nix -u firefox

which builds the new Firefox package and makes it available
in the user’s PATH. This upgrade is atomic: at any point in
time, issuing the command firefox either runs the old or the
new version of Firefox, but never an inconsistent mix of the
two. Figure 1 shows an example where, in an atomic ac-
tion, we have upgraded Firefox and installed a new package,
GCC. The user’s PATH environment variable contains the
path /nix/var/nix/profiles/default/bin, which — via some
indirections through symbolic links — resolves to a direc-
tory containing symlinks to the currently “installed” pro-
grams. Thus, /nix/var/nix/profiles/default/bin/firefox re-
solves to the currently active version of Firefox. By flipping
the symlink /nix/var/nix/profiles/default from default-23
to default-24, we can switch to the new configuration. Since
replacing a symlink can be done atomically on Unix, upgrad-
ing can be done atomically.

Packages in the store are deleted by a garbage collec-
tor that determines liveness by following package runtime
dependencies from a set of roots, namely, the symlinks in
/nix/var/nix/profiles. Thus, only when the symlink default-
23 is removed can the garbage collector delete firefox-
2.0.0.14. Running processes and open files are also roots.
This make it safe to run the garbage collector at any time.

Thus, Nix achieves atomicity of package upgrades due
to two properties: first, the new version of the package is
built and stored separately, not interfering with the currently
active version; and second, the new version is activated in an
atomic step by updating a single symlink. In the remainder
of this paper, we show an extension to Nix that allows atomic
upgrades of services and distributed deployments.

3. Disnix
Just as distributed systems appear to a user as one logical
system, we also would like to deploy software on a dis-
tributed system as if it were a single system. However, this
ideal is hard to achieve with conventional deployment tools.
First, the deployment system necessarily has to know to what
computer each service should be deployed. Second, it must
know the dependencies between services on different com-
puters. So in addition to local dependencies between pack-
ages on a single computer, the intra-dependencies, there are
also dependencies between services on different computers,
the inter-dependencies.

To make distributed deployment possible we need to ex-
tend the Nix deployment system. We call this extension Dis-
nix. The Disnix deployment system contains an interface
which allows another process or user to access the Nix store
and Nix user profiles remotely through a distributed commu-
nication protocol, e.g. SOAP. The Disnix system also con-
sists of tools that support distributed installing, upgrading,
uninstalling and other deployment activities by calling these
interfaces on the nodes in the distributed system.

To deploy packages on a single computer Nix just needs
to know the compositions of each package and how to build
them. Disnix needs some additional information for deploy-
ing services on multiple computers. Therefore we introduce
three models: a services model, an infrastructure model and
a distribution model. The services model describes the ser-
vices that can be distributed across computers in the net-
work. Each service is essentially a package, except that it
has an extra property called dependsOn which describes the
inter-dependencies on other services. Figure 3 shows a Nix
expression that describes a model for two services: HelloSer-
vice, which has no dependencies, and HelloWorldService,
which depends on the former.

The infrastructure model is a Nix expression that de-
scribes certain attributes about each computer in the net-
work. Figure 4 shows an example of a network with two
computers. In the model we describe the hostname and the
target endpoint references (targetEPR) of the Disnix inter-

rec {
pkgs = import ./pkgs.nix;

HelloService = {
pkg = pkgs.HelloService;
dependsOn = [];

};
HelloWorldService = {

pkg = pkgs.HelloWorldService;
dependsOn = [HelloService];

};
}

Figure 3. services.nix

{
itchy = {

hostname = "itchy";
targetEPR = http://itchy/.../DisnixService;

};
scratchy = {

hostname = "scratchy";
targetEPR = http://scratchy/.../DisnixService;

};
}

Figure 4. infrastructure.nix

{services, infrastructure}:

[
{ service = services.HelloService;

target = infrastructure.itchy; }
{ service = services.HelloWorldService;

target = infrastructure.scratchy; }
]

Figure 5. distribution.nix

face. The targetEPR is a URL that points to the Disnix web-
service that can execute operations on the remote Nix store.

The distribution model is a Nix expression that connects
the services and infrastructure model, mapping services to
computers. It contains a function which takes a services and
infrastructure model as its inputs and returns a list of pairs.
Each pair describes what service should be distributed to
which computer in the network. Figure 5 shows an example.
It is also possible to specify a specific component multiple
times in the model. In this case the same variant of the ser-
vice will be deployed on another machine. It is also possible
to use multiple variants of a specific component by defining
their compositions in the services model.

Figure 6 shows an overview of the Disnix system. It
consists of a distribution function that takes a distribution
model as input. After building the services in the model it
distributes them to the target computers and finally activates
them. Services that are no longer in use are deactivated.
Activation and deactivation are performed via the Disnix
interfaces on the target computers.

4. Distributed deployment states
A distributed system has certain services installed on certain
computers in its network. We can describe this as a deploy-

Figure 6. Concepts of the Disnix deployment system

ment state of the distributed system. If we want to change
this deployment state, e.g. by installing new services, unin-
stalling old services, replacing services with newer versions,
or by migrating services from one computer to another, we
do this by defining a new distribution model. By calculat-
ing the intersection of the outputs of the current distribution
model and the new distribution model we can derive for each
computer in the network what services should be activated
and what services should be deactivated.

Let’s take O = {D | D ∈ (service, computer)} as
the output of the previous distribution model and N =
{D | D ∈ (service, computer)} as the output of the new
distribution model. Let’s take I = O ∩N . Then the services
we should uninstall in the network are: O−I and the services
we should install in the network are: N − I . The distribution
actions in set I remain unchanged.

The transition from the old state to the new state can
be done by passing the outputs of the current and the new
distribution model to the distribution function. By keeping
older versions of the outputs it is also possible to switch back
to older generations of deployment states. This can be done
by passing the output of the current distribution model and
the output of an older generation to the distribution function.

Observe that it is always possible to reconstruct the cur-
rent distribution model and deployment state by capturing
the global state of the distributed system. Obviously, this can
become a costly operation in a large distributed environment
with a lot of computers and slow network connections.

5. Atomic upgrading
To make the transition from the current deployment state to
the new deployment state in the distributed system an atomic
operation, we use a variant of the two-phase commit proto-
col (Skeen and Stonebraker 1987). This transition has to be
atomic because we do not want to end up in an inconsistent
state in case of a failure. Either all services should be acti-
vated and deactivated as described in the distribution model
or the deployment state should stay as it currently is.

The two-phase commit protocol is a distributed algorithm
that lets all nodes in a distributed system agree to commit
a transaction. One node is called the coordinator, which
initiates both phases. The rest of the nodes in the network
are called the cohorts.

The first phase of the algorithm is the distribution or
commit-request phase. In this phase all the nodes execute the
transaction until the point that the modifications should be
commited. The second phase of the algorithm is the commit
phase. If all the cohorts succeed in executing the steps in the
commit-request phase then the changes will be committed
by each cohort. If one or more of the cohorts fail in the
commit phase, then every cohort will do a rollback.

In the commit-request or distribution phase the deriva-
tions in the distribution model are built in the Nix store on
the computer of the coordinator. Once all services have been
built, the distribution function decides what service to dis-
tribute to which target computers by comparing what new
services are defined in the new distribution compared to the
previous one. The services and all its intra-dependencies are
transferred to the computers in the network through the Dis-
nix interface. After receiving the services, the interface will
import the services in the Nix store on the target computer.

If all steps in the commit-request phase succeed then the
commit or transition phase will start. In this phase each co-
hort acquires an exclusive lock so that no other process can
modify the target profile (e.g. /nix/var/nix/profiles/default)
on the target computer. All obsolete services are uninstalled
from, and new services are installed into the profiles of the
target computers. Because the profiles are garbage collec-
tor roots, the services will not be garbage collected. If the
commit phase succeeds, each cohort releases the lock.

If the commit-request phase fails then there is nothing we
have to do. It is not necessary to undo the changes, because
there are no files overwritten due to the non-destructive
model of the Nix package manager. The closures that are
transferred to the target computers are not activated in the
profiles. The transferred services do not have a garbage col-
lector root, so they are still garbage and will be deleted by
the garbage collector.

Of course, merely installing new versions of each service
is not enough to achieve atomicity. We must also block ac-
cess to services while the commit phase is in progress. This
can be done by wrapping services in a proxy that does the
following. In the commit-request phase, the proxy “drains”
current connections, i.e., it waits for current connections to
the old version of the wrapped service to finish. Once all con-
nections are finished, it acknowledges the commit request.
Second, once the commit request has been received, it blocks
new incoming connections (i.e., connections are accepted,
but are kept inactive). Thus, the commit phase can only start
whenever no connections to old versions of services exist. In
the commit phase, the old version of the service is stopped,
the new version is started, and the blocked connections are
unblocked and forwarded to the new version of the service.
From this point, all connections will be to the new versions
of the services in the system. There is no time window in
which one can simultaneously reach the old version of some
service and the new version of another.

6. Distributed profiles
Nix supports a static and a dynamic mechanism for binding
intra-dependencies. Dynamic binding is supported by means
of Nix profiles. Essentially, Nix profiles are lookup tables
which map file names to Nix store locations (see Figure 1).
They can be automatically upgraded and downgraded, and
they enable dynamic binding of intra-dependencies. Con-
sequently, a user does not need to remember the store
location of a program HelloWorldService herself, but
by having nix-profile/bin in her search path, typing
HelloWorldService will map to the proper Nix store lo-
cation of the version of HelloWorldService that is active in
the current profile.

Static binding of intra-dependencies is supported by
means of Nix expressions. In this case, our example pro-
gram HelloWorldService which has an inter-dependency
on HelloService receives a reference to the Nix store lo-
cation of HelloService from Nix at build-time. This ref-
erence cannot be changed afterward. Only by rebuilding
HelloWorldService a different binding to HelloService
can be realized, but this will result in another instance of
HelloWorldService in the Nix store.

Static binding through Nix expressions is also supported
for inter-dependencies. The locations of services can be
hard-coded in executables or be stored in configuration files.
Whenever a dependency changes, Nix ensures that the corre-
sponding bindings are updated accordingly, while the trans-
action mechanism of Disnix ensures that all required up-
grades to the distributed environment are performed together
as an atomic upgrade action. A disadvantage of static bind-
ing is that even if only the location of a service changes, all
services that transitively depend on it will have to be (par-
tially) rebuild and redeployed.

Alternatively, we extend the concept of Nix profiles to
distributed profiles to also support dynamic binding. A dis-
tributed profile is similar to a Nix profile in that it maps
names to locations. In contrast to Nix profiles, names and
locations correspond to service names and network loca-
tions, respectively, rather than to file names and Nix store
locations. Actually, these mappings correspond directly to
a distribution model (see Figure 5). A special lookup ser-
vice provides remote access to a distributed profile. A dis-
tribution model thus serves as input for Disnix to realize a
distributed deployment, and as distributed profile to dynam-
ically bind services to their locations. Like Nix profiles, up-
dating and downgrading of distributed profiles are atomic
actions. In contrast to static binding, there is no need to up-
date all transitive dependent services when the location of a
service changes, only the corresponding mapping in the dis-
tributed profile needs to be updated.

7. Concluding Remarks
In this paper we demonstrated that we can extend the Nix
approach of upgrading single computers to upgrading dis-

tributed systems. This is done by introducing additional
models and tools that use the Nix primitives of software
deployment which form the Disnix deployment system.
We also demonstrated that many analogies of Nix can be
mapped to a distributed variant of Nix, called Disnix.

Currently, the distribution of services to computers in the
network is static. We have to specify to which computer a
service should be distributed. We are currently developing
a more dynamic approach by extending the Disnix deploy-
ment system with a tool which generates a distribution ex-
pression dynamically based on Quality of Service models.
With this solution we can support load balancing and we no
longer have to provide a distribution model explicitly.

We assume that we only need to remove and install ser-
vices in the profiles of the target computers in order to acti-
vate and deactivate them. For some services this process is
sufficient. For instance Apache Axis2 supports hot deploy-
ment (Apache Software Foundation 2008). Some services
however need to be started and stopped explicitly. There are
even services that run inside containers, for instance Enter-
prise Java Beans (EJB) (Dearle 2007). To activate these ser-
vices we need to restart the container. Currently, the only
way to activate and deactivate processes explicitly is by call-
ing a remote process through the Disnix interface.

This research is supported in part by NWO-JACQUARD
project PDS: Pull Deployment of Services.

References
Apache Software Foundation. Apache Axis2 installation

guide, 2008. URL http://ws.apache.org/axis2/1 4/
installationguide.html.

Alan Dearle. Software deployment, past, present and future. In
FOSE ’07: 2007 Future of Software Engineering, pages 269–
284, Washington, DC, USA, 2007. IEEE Computer Society.

Eelco Dolstra. The Purely Functional Software Deployment Model.
PhD thesis, Faculty of Science, Utrecht University, The Nether-
lands, January 2006.

Eelco Dolstra and Andres Löh. NixOS: A purely functional Linux
distribution. In ICFP 2008: 13th ACM SIGPLAN Intl. Conf. on
Functional Programming. ACM Press, September 2008.

Eelco Dolstra, Eelco Visser, and Merijn de Jonge. Imposing a
memory management discipline on software deployment. In
Proc. 26th Intl. Conf. on Software Engineering (ICSE 2004),
pages 583–592. IEEE Computer Society, May 2004.

Eric Foster-Johnson. Red Hat RPM Guide. John Wiley &
Sons, 2003. Also at http://fedora.redhat.com/docs/drafts/
rpm-guide-en/.

K. Nadiminti, M. Dias De Assuncao, and R. Buyya. Distributed
systems and recent innovations: Challenges and benefits. In-
foNet Magazine, 16(3):1–5, 2006.

Dale Skeen and Michael Stonebraker. A formal model of crash
recovery in a distributed system. In Concurrency control and
reliability in distributed systems, pages 295–317, New York, NY,
USA, 1987. Van Nostrand Reinhold Co.

