
Feature-Based Product Line Instantiation
using Source-Level Packages?

Arie van Deursen1, Merijn de Jonge1, and Tobias Kuipers2

1 CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

2 Software Improvement Group
Kruislaan 419, 1098 VA Amsterdam, The Netherlands

Arie.van.Deursen@cwi.nl, http://www.cwi.nl/�arie
Merijn.de.Jonge@cwi.nl, http://www.cwi.nl/�mdejonge

tk@software-improvers.com, http://www.software-improvers.com/

Abstract. In this paper we discuss the construction of software products from
customer-specific feature selections. We address variability management with the
Feature Description Language (FDL) to capture variation points of product line
architectures. We describe feature packaging which covers selecting and pack-
aging implementation components according to feature selections using theau-
tobundle tool. Finally, we discuss a generic approach, based on the abstract
factory design pattern, to make instantiated (customer-specific) variability acces-
sible in applications.
The solutions and techniques presented in this paper are based on our experience
with the product line architecture of the commercial documentation generator
DocGen.

1 Introduction

This paper deals with three key issues in software product lines: variability manage-
ment, feature packaging, and product line instantiation. It covers these topics based on
our experience in the design, implementation, and deployment of DocGen, a commer-
cial product line in the area of documentation generation for legacy systems.

Like many product lines, DocGen started out as a single product dedicated to a
particular customer. It was followed by modifications of this product for a series of sub-
sequent customers, who all wanted a similar documentation generator, specialized to
their specific needs. Gradually a kernel generator evolved, which could be instantiated
to dedicated documentation requirements. DocGen is still evolving, and each new cus-
tomer may introduce functionality that affects the kernel generator. This may involve
the need for additional variation points in DocGen, or the introduction of functionality
that is useful to a broad range of customers meriting inclusion in the standard DocGen
setup.

The business model we use to accommodate such an evolving product line special-
ized to the needs of many different customers is based on subscription: customers can

? This research was sponsored in part by the Dutch Telematica Instituut, project DSL.

install a new DocGen version on a regular basis, which is guaranteed to be compat-
ible with that customer’s specializations. For the customer this has the advantage of
being able to benefit from DocGen extensions; For the supplier it has the advantage of
a continuous revenue flow instead of harder to predict large lump sums when selling a
particular product.

The technological challenges of this business model and its corresponding evolu-
tionary product line development are significant. In particular, product line evolution
must be organized such that it can deal with many different customers. In this paper, we
cover three related issues that we experienced as very helpful to address this problem.

Our first topic is managing the variation points, which are likely to change at each
release. When discussing the use of DocGen with a potential customer, it must be clear
what the variability of the current system is. The new customer may have additional
wishes which may require the creation of new variation points, extending or modifying
the existing interfaces. Moreover, marketing, customer support, or the product manager
may come up with ideas for new functionality, which will also affect the variability. In
Section 3 we study the use of theFeature Description LanguageFDL described in [8]
to capture such a changing variability.

The second issue we cover is managing the source code components implementing
the variability. The features selected by a customer should be mapped to appropriately
configured software components. In Section 4 we describe our approach, which empha-
sizes developing product line components separately, using internally released software
packages. Assembling a product from these packages consists of merging the sources
of these packages, as well as the corresponding build processes – a technique called
source tree composition[15]. Packages can either implement a feature, or implement
functionality shared by other packages.

The third topic we address is managing customer code, that is, the instantiated
variability. The same feature can be implemented slightly differently for different cus-
tomers. In Section 5 we propose an extension of the abstract factory to achieve appro-
priate packaging and configuration of customer code.

In Section 6 we summarize our approach, contrast it with related work, and de-
scribe future directions. Before we dive into that, we provide a short introduction to the
DocGen product line in Section 2.

2 A Documentation Generation Product Line

In this section we introduce the product line DocGen [9, 10], which we will use as our
case study throughout the paper. Our discussion of DocGen follows the format used by
Bosch to present his software product line case studies [5].

2.1 Company Background

DocGen is the flagship product of the Software Improvement Group (SIG), an Amster-
dam, The Netherlands based company offering solutions to businesses facing problems
with the maintenance and evolution of software systems. SIG was founded in 2000, and
is a spin-off of academic research in the area of reverse and re-engineering conducted

at CWI from 1996 to 1999. This research resulted in, amongst others, a prototype doc-
umentation generator described by [9], which was the starting point for the DocGen
product family now offered by SIG.

2.2 Product Family

SIG delivers a range of documentation generation products. These products vary in the
source languages analyzed (such as SQL, Cobol, JCL, 4GL’s, proprietary languages,
and so on) as well as the way in which the derived documentation is to be presented.

Each DocGen product operates by populating a repository with a series of facts
derived from legacy sources. These facts are used to derive web-based documentation
for the systems analyzed. This documentation includes textual summaries, overviews,
various forms of control flow graphs, architectural information, and so on. Information
is available at different levels of abstraction, which are connected through hyperlinks.

DocGen customers have different wishes regarding the languages to be analyzed,
the specific set of analyses to be performed, and the way in which the collected infor-
mation should be retrieved. Thus, DocGen is a software product line, providing a set of
reusable assets well-suited to express and implement different customized documenta-
tion generation systems.

2.3 Technology

At present, DocGen is an object-oriented application framework written in Java. It uses
a relational database to store facts derived from legacy sources. It provides a range of
core classes for analysis and presentation purposes. In order to instantiate family mem-
bers, a Java package specific to a given customer is created, containing specializations
of core classes where needed, including methods called by the DocGen factory for pro-
ducing the actual DocGen instantiation. DocGen consists of approximately 850 Java
classes, 750 Java classes generated from language definitions, 250 Java classes used for
continuous testing, and roughly 50 shell and Perl scripts.

In addition to the key classes, DocGen makes use of external packages, for example
for graph drawing purposes.

2.4 Organization

Since SIG is a relatively small company, the development team tries to work as closely
together as possible. For that reason, there is no explicit separation between a core prod-
uct line development team and project teams responsible for building bespoke customer
products. Instead, these are roles, which are rotated throughout the entire team.

For each product instantiation, a dedicated person is assigned in order to fulfill the
customer role. This person is responsible for accepting or rejecting the product derived
from DocGen for a particular customer.

2.5 Process

The construction of DocGen is characterized by evolutionary design (DocGen is being
developed following the principles of extreme programming [4]). DocGen started as a
research prototype described by [9]. This prototype was not implemented as a reusable
framework; instead it just produced documentation as desired by one particular cus-
tomer. As the commercial interest in applications of DocGen grew, more and more
variation points were introduced, evolving DocGen into a system suitable for deriving
many different documentation generation systems.

With the number of customer configurations growing, it is time to rethink the way
in which DocGen product instantiations are created, and what sort of variability the
DocGen product line should offer.

3 Analyzing Variability

3.1 Feature Descriptions

To explore the variability of software product lines we use the Feature Description
Language FDL discussed by [8]. This is essentially a textual representation for the
feature diagrams of the Feature Oriented Domain Analysis method FODA [16].

A feature can beatomicor composite. We will use the convention that names of
atomic features start with a lower case letter and names of composite features start
with an upper case letter. Note that atomic and composite features are called features,
respectively, subconcepts in [7].

An FDL definition consists of a number offeature definitions: a feature name fol-
lowed by “: ” and afeature expression. A feature expression can consist of

– an atomic feature;
– a composite feature: a named feature whose definition appears elsewhere;
– an optional feature: a feature expression followed by “?”;
– mandatory features: a list of feature expressions enclosed inall() ;
– alternative features: a list of feature expressions enclosed inone-of() ;
– selection of features:1 a list of feature expressions enclosed inmore-of() ;
– features of the form... , indicating that a given set is not completely specified.

An FDL definition generates all possible feature configurations, also calledproduct
instances. Feature configurations are flat sets of features of the formall(a1; : : : ;an) ,
where eachai denotes an atomic feature. In [8] a series of FDL manipulations is de-
scribed, to bring any FDL definition into adisjunctive normal formdefined as:

one-of(all(a11; : : : ;a1n1) ; : : : ; all(am1; : : : ;amnm))

By bringing an FDL definition in disjunctive normal form, a feature expression is ob-
tained that lists all possible configurations.

Feature combinations can be further restricted viaconstraints. We will adopt the
following constraints:
1 Called “or-features” in [7].

– A1 requires A2 : if featureA1 is present, then featureA2 should also be present;
– A1 excludes A2 : if featureA1 is present, then featureA2 should not be present;

Such constraints are calleddiagram constraintssince they express fixed, inherent,
dependencies between features in a diagram.

DocGen:
all(Analysis, Presentation, Database)

Analysis :
all(LanguageAnalysis, versionManagement?, subsystems?)

LanguageAnalysis:
more-of(Cobol, jcl, sql, delphi, progress, ...)

Cobol :
one-of(ibm-cobol, microfocus-cobol, ...)

Presentation:
all(Localization, Interaction, MainPages, Visualizations?)

Localization:
more-of(english, dutch)

Interaction:
one-of(static, dynamic)

MainPages:
more-of(ProgramPage, copybookPage, StatisticsPage, indexes, searchPage,

subsystemPage, sourcePage, sourceDifference, ...)
ProgramPage:

more-of(annotationSection, activationSection, entitiesSection, parametersSection, ...)
StatisticsPage:

one-of(statsWithHistory, statsNoHistory)
Visualizations:

more-of(performGraph, conditionalPerformGraph, jclGraph, subsystemGraph,
overviewGraph, ...)

Database:
one-of(db2, oracle, mysql, ...)

Fig. 1. Some of the configurable features of the DocGen product line expressed in the Feature
Description Language (FDL).

3.2 DocGen Features

A selection of the variable features of DocGen and some of their constraints are shown
in Figures 1 and 2. The features listed describe the variation points in the current version
of DocGen. One of the goals of constructing the FDL specification of these features is
to search for alternative ways in which to organize the variable features, in order to
optimize the configuration process of DocGen family members. Another goal of the
FDL specification is to help (re-) structuring the implementation of product lines.

The features listed focus on just the Analysis and Presentation configuration of Doc-
Gen, as specified by the first dependency of Figure 1. The Database feature in that
dependency will not be discussed here.

%% Some constraints
subsystemPage requires subsystems
subsystemGraph requires subsystems
sourceDifference requires versionManagement
%% Some source language constraints
performGraph requires cobol
conditionalPerformgraphrequires cobol
jclGraph requires jcl
%% Mutually exclusive features
static excludesannotationSection
static excludessearchPage

Fig. 2. Constraints on variable DocGen features.

The Analysis features show how the DocGen analysis can be influenced by specify-
ing source languages that DocGen should be able to process. The per-language parsing
will actually populate a data base, which can then be used for further analysis.

Other features are optional. For example,versionManagementcan be switched on,
so that differences between documented sources can be seen over time. When a sys-
tem to be documented contains subsystems which need to be taken into account, the
subsystemsfeature can be set.

The Presentation features affect the way in which the facts contained in the reposi-
tory are presented to DocGen end users. As an example, the Localization feature indi-
cates which languages are supported (English, Dutch, ...). At compile time, one or more
supported languages can be selected; at run time, the end user can use a web-browser’s
localization scheme to actually select a language.

The Interaction feature determines the moment the HTML pages are generated. In
dynamicinteraction, a page is created whenever the end-user requests a page. This has
the advantage that the pages always use the most up-to-date information from the repos-
itory and that interactive browsing is possible. Instaticmode, all pages are generated
in advance. This has the advantage that no web-server is needed to inspect the data and
that they can be easily viewed on a disconnected laptop. As we will see, the Interaction
feature puts constraints on other presentation features.

The MainPages feature indicates the contents of the root page of the derived doc-
umentation. It is a list of standard pages that can be reused, implemented as a many-
to-one association to subclasses of an abstract “Page” class. Of these, the ProgramPage
consists of one or more sections.

In addition to pages, presentation includes various Visualizations. These are all op-
tional, allowing a customer to choose to have plain (HTML) documentation (which
requires less software to be installed at the client side) or graphically enhanced docu-
mentation (which requires plug-ins to be installed).

3.3 DocGen Feature Constraints

Figure 2 lists several constraints restricting the number of valid DocGen configurations
of the features listed in Figure 1.

The pages that can be presented depend on the analyses that are conducted. If we
want to show asubsystemGraph, we need to have selectedsubsystems. Some features
are language specific: ajclGraph can only be shown whenjcl is one of the analyzed
languages.

Last but not least, certain features are in conflict with each other. In particular, the
annotationSectioncan be used to let the end-user interactively add annotations to pages,
which are then stored in the repository. This is only possible in the dynamic version,
and cannot be done if the Interaction is set tostatic. The same holds for the dynamic
searchPage.

3.4 Evaluation

Developing and maintaining a feature description for an existing application, gives a
clear understanding of the variability of the application. It can be used not only dur-
ing product instantiation, but also when discussing the the design of the product line.
As an example, discussions about the DocGen feature description have resulted in the
discovery of several potential inconsistencies, as well as suggestions for resolving them.

One of the problems with the use of feature descriptions is that feature dependencies
can be defined in multiple ways, for instance as a composite feature definition or as a
combination of a feature definition and constraints. We are still experimenting with
using these different constructs in order to develop heuristics about when to use which
construct.

4 Software Assembly

4.1 Source Tree Composition

Source tree composition is the process of assembling software systems by merging
reusable source code components. Asource treeis defined as a collection of source files,
together withbuild instructions, divided in a directory hierarchy [15]. We call the source
tree of a particular part of a product line architecture asource code component. Source
code components can be developed, maintained, tested, and released individually.

Source treecompositioninvolves merging source trees, build processes, and config-
uration processes. It results in a single source tree with centralized build and configura-
tion processes [15].

Source tree composition requires abstractions over source code components which
are calledpackage definitions(see Figure 3). They capture information about the com-
ponent such as its dependencies on other components, and its configuration parameters.
Package definitions as the one in Figure 3 are calledconcretepackage definitions be-
cause they correspond directly to an implementing source code component.Abstract
package definitions, on the other hand, do not correspond to implementing source code

package
identification

name=docgen
version=2.4

location=http://www.software-improvers.com/packages
info=http://www.software-improvers.com

description=’DocGen, documentation generation tool.’
keywords=docgen, documentation generation, core

configuration interface
customer’name identifying customer-specific issues’
requires

html-lib 1.5 with xml-support=on
gnuregexp 1.1.4
junit 3.5

Fig. 3. Example of a package definition for the DocGen core package. The ‘configuration in-
terface’ section lists configurable items together with corresponding short descriptions. The ‘re-
quires’ section defines package dependencies and their configuration.

components. They only combine existing packages and set configuration options. Ab-
stract package definitions are distinguished from concrete package definitions by having
an empty location field (see Figure 5).

After selecting components of need, a softwarebundle(containing all correspond-
ing source trees) is obtained through a process calledpackage normalization. This
process includes package dependency and version resolution, build order arrangement,
configuration distribution, and bundle interface construction. We refer to [15] for a com-
plete description of source tree composition.

Package definitions are stored centrally inpackage repositories. They can be ac-
cessed by developers to search for reusable packages. They are also accessed by the
tool autobundle (see below) to resolve package dependencies automatically when
assembling product instances.

Source tree composition is supported and automated byautobundle 2 [15]. Given
a set of package names, it (i) obtains their package definitions from package reposi-
tories; (ii) calculates the transitive closure of all required packages; (iii) calculates a
(partial) configuration of the individual packages; (iv) generates a self-contained source
tree by merging the source trees of all required packages; (v) integrates the configura-
tion and build processes of all bundled packages.

4.2 Source Tree Composition in Product Lines

With the help ofautobundle , assembling products on a product line can become
as simple as selecting the necessary packages.Autobundle is used to bundle them
together with required packages into self-contained customer-specific source distribu-
tions.
2 autobundle is free software and available for download at http://www.cwi.nl/�mdejonge/

autobundle/.

Fig. 4. Screenshot of an experimental online package repository from which implementing Doc-
Gen packages can be selected to assemble DocGen product instances.

Package selection can be performed by developers by accessing (online) package
repositories (see Figure 4) and selecting the packages of need. By pressing the “bundle”
button,autobundle is instructed to generate the desired software bundle.

By manually selecting concrete packages from an online package repository, a de-
veloper maps a selection of features to a corresponding selection of implementing
source code components. This is called product configuration. Manual selection of
packages forms an implicit relation between features (in the problem space) and im-
plementation (in the solution space).

This relation between problem and solution space is a many-to-many relation: a
single feature can be implemented in more than one source code package; a single
source code package can implement multiple features. Selecting a feature therefore may
yield a configuration of a single source code package that implements multiple features
(to turn the selected feature on), or it may result in bundling a collection of packages
that implement the feature together.

The relation between problem and solution space can be defined more explicitly in
abstract package definitions. Abstract package definitions then correspond directly to
features according to the feature description of a product line architecture (see Figure 5).

package
identification

name=c3-project
version=1.7

location=
info=http://www.software-improvers.com/c3

description=’DocGen instance for customer C3.’
keywords=customers, c3

configuration interface
requires

docgen 2.4with customer=c3
analysis 1.2with language=cobol

Fig. 5. Example of anabstractpackage definition which forms a mapping from the problem to
the solution space.

The ‘requires’ section of abstract packages defines dependencies upon abstract and/or
concrete packages. The latter define how to map (part of) a feature to an implemen-
tation component. During package normalization, all mappings are applied, yielding a
collection of implementation components.

Like concrete package definitions, the definitions of abstract packages can also
be made available via online package bases. Package bases then serve to represent
application-oriented concepts and features. Assembling product instances then reduces
to selecting the features of need.

4.3 Source Tree Composition in DocGen

To benefit from source tree composition to easily assemble different product instances,
the source tree of the DocGen product line needs to be split up. Different parts of the
product line then become separate source code components. Every feature as described
in the feature description languages should be contained in a single package. This pack-
age can be either abstract or concrete. These packages may depend on other core or li-
brary packages that do not implement an externally perceivable feature, but implement
general functionality.

Implementing each feature as a separate package promises a clean separation of
features in the source code. Whether one feature (implementation) depends on another
can be easily seen in the feature description. Currently the coupling between thefeature
selection and the selectedpackagesis an informal one. More experience is needed to be
able to decide whether this scheme will always work.

The source code components that implement a feature or general functionality are
internally released assource code packages, i.e., versioned distributions of source code
components as discussed in Section 4.1. These packages are subjected to an explicit
release policy. Reuse of software in different product instances is based only on released
source code components. This release and reuse policy allows different versions of a
component to coexist seamlessly. Furthermore, it allows developers to control when to
upgrade to a new version of a component.

Apart from the packages that implement the individual features, there are several
packages implementing general functionality. Of these, thedocgen package imple-
ments the user interface of the software analysis side of DocGen, as well as things like
the infrastructure to process files and read them from disk. It also implements the Appli-
cation Service Provider interface where customers offer their sources over the Internet.

In order to generate the final presentation of DocGen in HTML, a packagehtml-
lib provides us with the grammar of HTML and a number of interfaces to generate
files in HTML. The various graphical representations used in DocGen are bundled in
the packagegraph which knows how to present generic graphs as PDF files.

The DocGen source code components are stored in the DocGen package repository
(see Figure 4) from which customer-specific source trees are assembled. Compilation
of such assembled source trees is performed at the Software Improvement Group to
obtain customer products in binary form. The so obtained products are then packaged
and delivered to our customers.

4.4 Evaluation

Source tree composition applied to a product line such as DocGen results in a number
of benefits. Probably the most important one is that using source tree composition, it
is much easier to exclude functionality from the product line. This may be necessary
if customers only want to use a “low budget” edition. Moreover, it can be crucial for
code developed specifically for a particular customer: such code may contain essential
knowledge of a customer’s business, which should not be shared with other customers.

A second benefit of using packages for managing variation points is that it simpli-
fies product instantiation. By using a package repository as derived byautobundle ,
features can be easily selected, resulting in the correct composition of appropriately
configured packages.

Another benefit is that by putting variable features into separate packages, the source
tree is split into a series of separate source code components that can be maintained indi-
vidually and independently. This solves various problems involved in monolithic source
trees, such as: i) Long development/test/integration cycles; ii) Limited possibilities for
safe simultaneous development due to undocumented dependencies between parts of
the source tree; iii) No version management and release policy for individual compo-
nents. Explicitly released packages having explicitly documented dependencies help to
resolve these issues.

Special attention should be paid to so-calledcross cuttingfeatures. An example
is the aforementioned localization feature, which potentially affects any presentation
package. Such features result in a (global) configuration switch indicating that the fea-
ture is switched on. Observe that the implementation of these features can make use of
existing mechanisms to deal with cross cutting behavior, such as aspect-oriented pro-
gramming [17]: the use of source tree composition does not prescribe or exclude any
implementation technique.

packagedocgen;
public classLayout
f

...
String backgroundColor= ”white” ;
...

g

Fig. 6.Part of the defaultLayout class

5 Managing Customer Code

5.1 Customer Packages

Instantiating the DocGen product line for a particular customer amounts to:

– Selecting the variable features that should be included;
– Selecting the corresponding packages and setting the appropriate configuration

switches;
– Writing the customer-specific code for those features that cannot be expressed as

simple switches.

As the number of different customers increases, it becomes more and more impor-
tant to manage such product instantiations in a controlled and predictable way. The
first step is to adopt the source tree composition approach discussed in Section 4, and
create a separatepackagefor each customer. This package first of all contains customer-
specific Java code. Moreover, it includes a package definition indicating precisely which
(versions of) other DocGen packages it relies on, and how they should be configured.

5.2 Customer Factories

Customer package definitions capture the package dependencies and configuration switches.
In addition to this, the Java code implementing the packages should be organized in
such a way that it can easily deal with many different variants and specializations for
different customers. This involves the following challenges:

– DocGen core functionality must be able to create customer-specificobjects, without
becoming dependent on these;

– The overhead in instantiating DocGen for a new customer should be minimal;
– It must be simple to keep the existing customer-code running when new DocGen

variation points are created.

A partial solution is to adopt theabstract factorydesign pattern in order to deal
with a range of different customers in a unified way [11]. Abstract factory “provides an
interface for creating families of related or dependent objects without specifying their
concrete classes”. The participants of this pattern include:

– An abstract factoryinterface for creating abstract products;

packagedocgen.customers.greenbank;
public classLayout extendsdocgen.Layout
f

String backgroundColor= ”green”;
g

Fig. 7. TheLayout class for customer Green Bank

– Severalconcrete factories, one for each customer, for implementing the operations
to create customer-specific objects;

– A range ofabstract products, one for each type of product that needs to be extended
with customer-specific behavior;

– Severalconcrete products: per abstract product there can be different concrete prod-
ucts for each customer.

– The client uses only the interfaces declared by the abstract factory and abstract
products. In our case, this is the customer-independent DocGen kernel package.

The abstract factory solves the problem of creating customer-specific objects. Adop-
tion of the pattern as-is to a product line, however, is problematic if there are many
different customers. Each of these will require a separate concrete factory. This can
typically lead to code duplication, since many of these concrete factories will be simi-
lar.

To deal with this, we proposecustomer factoriesas an extension of the abstract
factory design pattern. Instead of creating a concrete factory for each customer, we have
one customer factory which uses a customernameto find customer-specific classes.
Reflection is then used to create an instance of the appropriate customer-specific class.

As an example, consider the classLayout in Figure 6, in which the default back-
ground color of the user interface is set to “white”. This class represents one of the
abstract productsof the factory pattern. The specialized version for customergreen-
bank is shown in Figure 7. The name of this class is the same, but it occurs in the
specificgreenbank package. Note that this is aJavapackage, which in turn can be
part of anautobundle package.

Since the Layout class represents an abstract product, we offer a static
getInstance factory method, which creates a layout object of the suitable type.
We do this for every constructor ofLayout .

As shown in Figure 8, thisgetInstance method is implemented using a static
method located in a class calledCustomerFactory . A key task of this method is to
find the actual class that needs to be instantiated. For this, it uses the customer’s name,
which is read from a centralized property file. It first tries to locate the class

docgen.customers.<current-customer-name>.Layout

If this class does not exist (e.g., because no customization is needed for this customer)
the Layout class in the specified package is identified.

Once the class is determined, Java’s reflection mechanism is used to invoke the
actual constructor. For this, an array of objects representing the arguments needed for
object instantiation is used. In the example, this array is empty.

packagedocgen;
public classLayout
f

...
public static Layout getInstance()
f

return (Layout)CustomerFactory.getProductInstance(
docgen.Layout.class, new Object[]fg);

g
...

g

Fig. 8. Factory code for theLayout class.

5.3 Evaluation

The overall effect of customer packages and customer factories is that

– Oneautobundle package is created for each customer, which exactly indicates
what packages are needed for this customer, and how they should be configured;

– All customer-specific Java code is put in a separate Java package, which in turn is
part of theautobundle package of the customer;

– Addding new customers doesnot involve the creation of additional concrete fac-
tories: instead, the customer package is automatically searched for relevant class
specializations;

– Turning an existing class into a variation point permitting customer-specific over-
riding is alocal change: instead of an adaptation to the abstract factory used by all
customers, it amounts to adding the appropriategetInstance to the variation
class.

A potential problem of the use of thecustomer factorypattern is that the heavy use
of reflection may involve an efficiency penalty. For DocGen this has proven not be a
problem. If it is,prototype instancesfor each class can be put in a hash table, which
are then cloned whenever a new instance is needed. In that case, the use of reflection is
limited to the construction of the hash table.

6 Concluding Remarks

6.1 Contributions

In this paper we combined three techniques to develop and build a product line architec-
ture. We used these techniques in practice for the DocGen application, but they might
be of general interest to build other product lines.

Feature descriptionslive at the design level of the product line and serve to explore
and capture the variability of a product line. They define features, feature interactions,

and feature constraints declaratively. A feature description thus defines all possible in-
stances of a product line architecture. A product instance is defined by making a feature
selection which is valid with respect to the feature description.

Feature descriptions are also helpful in understanding the variability of a product
during the development of a product line architecture. For instance, when migrating an
existing software system into a product line architecture, they can help to (re)structure
the system into source code components as we discussed in Section 4.3.

To assist the developer in making product instances, an interactive graphical repre-
sentation of feature descriptions (for instance based on feature diagrams or Customiza-
tion Decision Trees (CDT) [14]), would be of great help. Ideally, constructing product
instances from feature selections should be automated. The use ofautobundle to
automatically assemble source trees (see below), is a first step in this direction. Other
approaches are described in [14, 7].

Automated source tree compositionAt the implementation level we propose compo-
nent based software development and structuring of applications in separate source
code components. This helps to keep source trees small and manageable. Source code
components can be developed, maintained, and tested separately. An explicit release
policy gives great control over which version of a component to use. It also helps to
prevent a system from breaking down when components are simultaneous being used
and developed. To assist developers in building product instances by assembling appli-
cations from different sets of source code components, we propose automated source
tree composition. The toolautobundle can be used for this. Needed components can
be easily selected and automatically bundled via online package repositories.

Package definitions can be made to represent features of a product on a product line.
By making such (abstract) packages available via online package repositories, product
instantiation becomes as easy as selecting the necessary features. After selecting the
features, a self-contained source tree with an integrated build and configuration process
is automatically generated.

Customer configurationWhen two customers want the same feature, but require slightly
changed functionality, we propose the notion of customer specializations. We developed
a mechanism based on Java’s reflection mechanism to manage such customer specific
functionality.

This mechanism allows an application to consist of a core set of classes, after source
tree composition, that implement the features as selected for this particular product in-
stance. Customer specificity is accomplished by specializing the classes that are deemed
customer specific based on a global customer setting. When no particular specialization
is needed for a customer, the system will fall back on the default implementation. This
allows us to only implement the actual differences between each customer, and allows
for maximal reuse of code.

We implemented the customer specific mechanism in Java. It could easily be imple-
mented in other languages.

6.2 Related Work

RSEB, theReuse-driven Software Engineering Businesscovers many organizational
and technical issues of software product lines [13]. They emphasize an iterative process,
in which an application family evolves.Variation pointsare distinguished both at the
use case and at the source component level. Components are grouped intocomponent
systems, which are similar to ourabstract packages. In certain cases component systems
implement thefacadedesign pattern, which corresponds to a facade package in our
setting containing just the code to provide an integrated interface to the constituent
packages.

FeatuRSEBis an extension of RSEB with an explicit domain analysis phase [12]
based on FODA [16]. The feature model is used as acatalogof feature commonality
and variability. Moreover, it acts asconfiguration roadmapproviding an understanding
of what can be combined, selected, and customized in a system.

Generative programmingaims at automating the mapping from feature combina-
tions to implementation components through the use of generator technology [7], such
as C++ template meta programming or GenVoca [3]. They emphasize features that
“cross cut” the existing modularization, affecting many different components. Source
tree composition could be used to steer such generative compositions, making use of
partially shared configuration interfaces for constituent components.

Customization Decision Treesare an extension of feature diagrams proposed by
Jarzabeket al. [14]. Features can be annotated withscriptsspecifying the architecture
modifications needed to realizing the variant in question. In our setting, this could cor-
respond to annotating FDL descriptions with package names implementing the given
features.

Bosch analyzes the use of object-oriented frameworks as building blocks for imple-
menting software product lines [5]. One of his observations is that industrial-strength
component reuse is almost always realized at the source code level. “Components are
primarily developed internally and include functionality relevant for the products or ap-
plications in which it is used. Externally developed components are generatelly subject
to considerable (source code) adaptation to match, e.g., product line architecture re-
quirements” [5, p. 240].Source tree compositionas proposed in our paper provides the
support required to deal with this product line issue in a systematic and controlled way.

In another paper, Boschet al. list a number of problems related to product instan-
tiation [6]. They recognize that it is hard to exclude component features. Our proposed
solution is to address this by focusing on source-level component integration. More-
over, they observe that the initialization code is scattered and hidden. Our approach
addresses this problem by putting all initialization code in the abstract factory, so that
concrete factories can refine this as needed. Finally, they note the importance of design
patterns, including the abstract factory pattern for product instantiation.

The use of design patterns in software product lines is discussed by Sharp and Roll
[18]. Our paper deals with one design pattern in full detail, and proposes an extension
of this abstract factory pattern for the case in which there are many different customers
and product instantiations.

The abstract factory is also discussed in detail by Vlissides, who proposespluggable
factoriesas an alternative [19, 20]. The pluggable factory relies on theprototypepattern

(creating an object by copying a prototypical instance) in order to modify the behav-
ior of abstract factories dynamically. It is suitable when many different, but similar,
concrete factories are needed.

Anastasopoulos and Gacek discuss various techniques for implementing variability,
such as delegation, property files, reflection and design patterns [1]. Our abstract factory
proposal can be used for any of their techniques, and addresses the issue ofpackaging
the variability in the most suitable way.

The use ofattributedfeatures to describe configured and versioned sets of compo-
nents is covered by Zeller and Snelting [21]. They deal with configuration management
only: an interesting area of future research is to integrate their feature logic with the
feature descriptions of FODA and FDL.

6.3 Discussion and Future Work

There is a relation between the features as selected for a particular product instance
and the corresponding composition (and configuration) of implementing source code
components. We are still investigating how abstract packages can be used to define this
relation and howautobundle can be used to perform product configuration automat-
ically.

Also the use of online package repositories to assist a developer in assembling prod-
uct instances is subject to research. From online package repositories containing only
abstract packages (which directly correspond to features), developers can select the
features of need. With automated source tree composition, the corresponding imple-
menting components are determined and bundled in the intended product instance. It is
not clear yet how to handle feature interactions and feature constraints.

The techniques we used in this paper cover customization by means of static and
dynamic configuration. Customization can also be based on generative techniques [2,
14, 7]. Incorporating generative techniques (such as frame technology [2, 14]) in the
build process of DocGen for customer-specific customization would be interesting fu-
ture work.

References

1. M. Anastasopoulos and C. Gacek. Implementing product line variabilities. InProceedings
of the 2001 Symposium on Software Reusability, pages 109–117. ACM, 2001. SIGSOFT
Software Engineering Notes 26(3).

2. P. Bassett.Framing Software Reuse. Lessons From the Real World. Yourdon Press (ISBN
0-13327-859-X), 1997.

3. D. Batory, C. Johnson, B. MacDonald, and D. von Heeder. Achieving extensibility through
product-lines and domain-specific languages: A case study. InInternational Conference on
Software Reuse, volume 1844 ofLNCS, pages 117–136. Springer-Verlag, 2000.

4. K. Beck.Extreme Programming Explained. Embrace Change. Addison Wesley, 1999.
5. J. Bosch.Design and Use of Software Architectures: Adopting and Evolving a Product-Line

Approach. Addison-Wesley, 2000.
6. J. Bosch and M. Ḧogstr̈om. Product instantiation in software product lines: A case study. In

Proceedings of the Second International Symposium on Generative and Component-Based

Software Engineering (GCSE 2000), volume 2177 ofLecture Notes in Computer Science.
Springer-Verlag, 2000.

7. K. Czarnecki and U. W. Eisenecker.Generative Programming. Methods, Tools, and Appli-
cations. Addison-Wesley, 2000.

8. A. van Deursen and P. Klint. Domain-specific language design requires feature descriptions.
Journal of Computing and Information Technology, 2001.

9. A. van Deursen and T. Kuipers. Building documentation generators. InProceedings; IEEE
International Conference on Software Maintenance, pages 40–49. IEEE Computer Society
Press, 1999.

10. Automatic Documentation Generation; White Paper. Software Improvement Group, 2001.
http://www.software-improvers.com/PDF/DocGenWhitePaper.pdf.

11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

12. M. Griss, J. Favaro, and M. d’ Alessandro. Integrating feature modeling with the RSEB. In
Proceedings of the Fifth International Conference on Software Reuse, pages 76–85. IEEE
Computer Society, 1998.

13. I. Jacobson, M. Griss, and P. Jonsson.Software Reuse: Architecture, Process and Organiza-
tion for Business Success. Addison-Wesley, 1997.

14. S. Jarzabek and R. Seviora. Engineering components for ease of customization and evo-
lution. IEE Proceedings – Software, 147(6):237–248, December 2000. A special issue on
Component-based Software Engineering.

15. M. de Jonge. Source tree composition. InProceedings: Seventh International Conference
on Software Reuse, LNCS. Springer-Verlag, 2002. To appear.

16. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented domain analy-
sis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, november 1990.

17. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M Loingtier, and
J. Irwin. Aspect-oriented programming. InProceedings of the European Conference on
Object-Oriented Programming (ECOOP), Lecture Notes in Computer Science. Springer-
Verlag, 1997.

18. D. Sharp and W. Roll. Pattern usage in an avionics mission processing product line. In
Proceedings of the OOPSLA 2001 Workshop on Patterns and Pattern Languages for OO
Distributed Real-time and Embedded Systems, 2001. See http://www.cs.wustl.edu/�mk1/
RealTimePatterns/.

19. J. Vlissides. Pluggable factory, part I.C++ Report, November/December 1998.
20. J. Vlissides. Pluggable factory, part II.C++ Report, February 1999.
21. A. Zeller and G. Snelting. Unified versioning through feature logic.ACM Transactions on

Software Engineering and Methodology, 6(4):398–441, 1997.

